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Natural Lagrangian systems, which model mechanisms with the kinematic structure of a tree and have several stable states of 
rest, are considered. Sufficient conditions are presented for global controllability, that is, the property that the system can be 
brought, using an admissible control action, from any initial phase state to any given phase state in a finite time. As an example, 
global controllability is demonstrated foe an object consisting of several point masses connected in series by rods and sliding 
without friction on a closed smooth curve in a gravitational field, with a single control force applied in the direction of the velocity 
to the first link. 0 2003 Elsevier Science Ltd. All rights reserved. 

1. BASIC DEFINITIONS 

In this paper, the controllability properties of dynamical systems are discussed in the language that has 
emerged in the literature [l, 21. Continuing previous research [3, 41, we shall consider objects with a 
cylindrical phase, e.g. multi-link pendulums and the like. All the notation and definitions are taken over 
from [4] without change. 

Natural Lagrangian systems are defined as objects whose Lagrangian, symmetric with respect to time 
reversal (t + -t), is given by 

Uq, q’) = X q%qh‘ - B(q) 

where q = (ql, . . . , q# is the configuration vector and A(q) is the inertia matrix (which is positive- 
definite). We shall again assume that the scalar potential B(q) has lower limit: B(q) 2 0, B(0) = 0, and 
that the equations of motion have the from 

, UEUCR” (1.1) 

where u = (ul, . . . , u,JT is the vector of controls, taken from a prescribed bounded set U containing an 
interior point u = 0. The values of certain (“angular”) coordinates qi (i = 1,2, . . . , r) are chosen in the 
covering space R’ x R”-‘, corresponding to the configuration space M = T’ x R”‘, where T' is an 
r-dimensional torus. In this situation we shall use the notation q E M. A similar definition holds for 
the phase space TM = T’ x Rkwr, so that (q, q’) E TM. 

If the feedback u = u(q, q’) is associated with a separatrix surface in TM, motion over which to a singular 
point takes an infinite time, then the surface is denoted by Q(u(q, 9’)). The set of equilibrium positions 

r=((q,q’): q’=O, aB/aq=O, U=o} 

is non-empty and finite. 
For any scalar function V(y) we shall use the following notation: Qv = {y: &‘Dy = O} is the set of 

critical points, EV = {c: c = V(y)> is the set of values, and H,(V(y)) = {y: V(y) s c, c E E,} are the 
domains bounded by the level surfaces of the function. 

It is well known [l, 21 that global controllability, say of system (l.l), in the neighbourhood of an 
equilibrium position need be observed only in the linear approximation, that is, considering the linearized 
equation y’ = Gy + Nu (of dimension n) and evaluating the controllability matrix K = [N, GN, . . . , 
G”-IN]. The controllability condition is rank K = n [5], and it is repeated exactly for the system 
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Fig. 1 

y” = Gy + Nu, whose order is twice as high (this is precisely the structure of the linearized Lagrange 
equations). 

Estimation of the domain of controllability of non-linear system (1.1) is most interesting in the case 
when the number of control actions is less that the number of degrees of freedom. As before [4], we 
shall speak of stabilizability, local controllability or global controllability “with input U, (i = 1, . . . , m)” 
if the conditions Uj = 0 (j = m + 1, m + 2, . . , n) are satisfied. 

In practical work, one is interested in models (1.1) of mechanical systems which are essentially non- 
linear. For such systems one can successfully estimate controllability properties in finite domains of the 
state space only by using the specific features of the classes of objects concerned. Mechanisms of the 
type of multi-link pendulums have been considered from this point of view [3,4]. They are characterized 
by the possibility of stabilizing the whole system in a unique equilibrium position or in a state of steady 
rotation. In what follows the list of globally controllable object will be enlarged by adding certain systems 
of rigid bodies that have not one but several stable equilibrium positions. 

Sufficient conditions for global controllability have been based [3, 41 on stabilizability properties 
revealed by Lypunov’s direct method in stability theory. In order to extend the well-know Barbashin- 
Krasovskii theorem [6] to the case of a cylindrical phase space Tk x R”, introduced [7] the concept 
of a connected Lyapunov function (CLF) V(y) (y E Tk x Rm). Such functions are not only positive-definite 
in Lyapunov’s sense (V(y) 2 0, V(y) = 0 3 y = 0), but also satisfy the condition that all the sets 
P A H,(V(y)) are connected in the set P C Tk x R” under consideration. 

For example [7], if the set Qv\O for a Lyapunov function V(y) (y E P), defined on a compact manifold 
P C Tk x Rm, consists of a finite number of isolated points, at each of which the matrix &Dy2 is not 
positive-definite, then V(y) is a CLF on P. In other words, if the function V(y) is not degenerate (i.e. 
is not a Morse function [S]) on a compact set P and has only one local minimum (at the point y = 0), 
then V(y) is a CLF on P. 

fiample 1. A system of n rigid rods, attached successively by cylindrical hinges, is situated in a vertical 
plane (Fig. 1). All the angles cpi(i = 1, 2, . . . , n) are measured off by the links of the pendulum from 
the vertical axis, and the suspension point fixed. The rods are assumed to be weightless, with their masses 
concentrated at the hinges. Then the potential energy B(q) = Cbi(1 - cos vi), where bi > 0 (i = 1, 2, 
. . . ) n) is a CLF on T”. 

&ample 2. A heavy trolley, on which it pendulums (of different lengths) are suspended in a common 
plane, is moving horizontally in a straight line (coordinate x), driven by an external horizontal force u 
satisfying a prescribed bound ]U ] s a (Fig. 2). The angles? (i = 1, 2, . . . , n) are measured from the 
vertical; the configuration vector is q = (x, cpi, .“. , cp,) E M = T” x R. The potential B(q) = 
%fi(l - cos cp;), where di > 0 (i = 1, 2, . . . , n), is not a CLF on M. Nevertheless, at the expense of part 



Globally controllable systems of rigid bodies with several stable rest states 741 

Fig. 2 

of the control action (u = u1 + ~2) one can artificially create a “potential well,” e.g. by feedback 
u1 = a(arctgx)/n. Then the generalized potential 

will be a CLF on M. 
One of the results obtained previously [3] will be used below in the following form; for simplicity we 

will confine out attention to the case of one-dimensional motion. 

Proposition 1. Suppose the potential B(q) in system (1.1) is a connected Lyapunov function on M 
and that the sets H,(B(q)) are compact. Then: 

(1) if the system, in free motion (u = 0), does not admit of the particular solution qj = 0 (excluding 
equilibrium positions), then it is stabilizable with input Uj (j = 1, 2, . . . , n) on the manifold TM\Q(ui); 

(2) If at the same time system (1.1) is locally controllable in the neighbourhood of all points 
(q*, 0) E 5 with the same input Uj, then it is globally controllable when only Uj is applied. 

In particular, it follows from Proposition 1 that the n-link pendulum in the vertical plane considered 
in Example 1 (without friction) is globally controllable by a single bounded torque ]u, ] s a,, applied 
to the last hinge. 

Similarly, one can prove that the system of Example 2 (Fig. 2) is globally controllable on T” x R”+‘, 
provided that the lengths of the pendulums suspended on the trolley are pairwise distinct [3]. 

2. SYSTEMS WITH A FINITE NUMBER OF STABLE REST STATES 

Proposition 1 can be generalized to the case of several local minima of the potential energy B(q), that 
is, without requiring it to be a connected Lyapunov function over the entire configuration manifold M. 
It will suffice only that all the domains H&B(q)) on M remain compact; in addition, it is required that 
the function B(q) should have the properties of a CLF in every connected component of these domains 
that contains a local minimum. It is assumed under these conditions that the matrices a2B/aq2 are 
non-singular at points where aB/aq = 0. In other words, the potential B(q) must be a Morse function 
on M. 

We again require local controllability in the neighbourhoods of all points (q*, 0) E 5, as well as when 
there are no particular solutions q; = 0 (except for rest states) if the controllability is investigated with 
respect to the input ui (i = 1, 2, . . , n). 

Since the number of connected components of the sets I-I,(B(q)) is finite (for any c), one can reason 
as shown in the simple of Fig. 3. A heavy point m in a potential well (without friction) may be stopped 
by a suitable control u acting in the direction of the velocity, in one of the states of stable equilibrium. 
Local controllability in a neighbourhood of either of point rl or r2 makes it possible to be stopped at 
either of them, without “sticking” at the point r12. In the phase space (q, q’) the object can be taken 
from position (r12, 0) to state (rl, 0), or equally well to (rz, 0). Therefore (because of the symmetry of 
the equations with respect to time reversal) the controllable motion (r,, 0) + (r12, 0) -+ (r2, 0) is feasible. 
As a result, for any states (qO, 40) and (qk, qi() of the system, the stepwise motion (qO, q;) + (r,, 0) -+ 
(r2, 0) + (qk, qi) (apart from exchanging the roles of rl and r2) is feasible. Thus, the system is globally 
controllable with input u bounded by a quantity as small as desired. 
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Proposition 2. Suppose the potential B(q) (q E M) for system (1.1) has a finite number of critical 
points, and that these are non-degenerate. Suppose moreover that a number co E EB exists such that 
the domain H,@(q)) is connected and compact for any c > co. 

If in fr?ee motion (u = 0) no particular solutions q; = 0 (i = 1,2, . . . , n) exist, except for equilibrium 
positions (q*, 0) E 5, and in neighbourhoods of these points system (1.1) is locally controllable with 
the same input ui, then the system is globally controllable under the action of ui alone. 

Proof. Since the domains H@(q)) are compact for c > co, it follows that they are compact for any 
c E EB, since H, C H,,, If the domain H&?(q)) is connected for any c E Eg, then B(q) is a CLF and 
the conditions of Proposition 1 are satisfied. 

Suppose (in the general case) that for some c G cg the domain H&?(q)) was unconnected. Define 
on M the set TJ of critical points ri (i = 1, 2, . . . , s) of the potential B(q) at which the matrices a2B/aq’ 
are positive-definite. To each point rj E TJ there corresponds a connected component h,(c) of H,(B(q)) 
that contains it, and this component “expands” as c increases. 

Since H,(B(q)) . is connected for c> co, it follows that for any two local minimum points rk and 
'j.(k,j= 1,2, . . . , s) (where B(rk) = ck, B(r,) = c,), a unique number ckj < cg exists such that 

hk(C)nhj(C)=O for max[ck,c,]<c<ck,, h,(C)Ahj(C)#0 for C>Ckj 

If there are common points when c = ckj, simultaneously for several matrices hi(C), they may be 
regarded as element either of hk(Ckj) or of h,(ckj). In the Set hk(ckj) I? h/(Ckr), the condition aB/aq = 0 
holds, since in the neighbourhood of that set any two points (of different components of this set - hk(c) 
and hj) do not have codirectional gradients aB/aq. Since B(q) is a Morse function, the “encounter” of 
the components hk and h;(c) as c -+ ckj takes placed at a finite number of isolated critical points. 

A motion of system (1.1) having begun at one of these points (call it (rkj, 0)) with kinetic energy 
T(tO) = 0, may be directed into previously selected domain of the configurations (h,&(ck, - 0) or 
hj(Ckj - 0)), due to local controllability. Using the control, we deduce from the condition dE/dt < 0 that 
B(to) + T(t,) 3 B(t,) + T(ti) for all t, > to, whence it follows that B(to) 2 B(t,), that is, the configuration 
does not go beyond the bounds of the selected set (e.g. hk(c)). 

The absence of particular solutions q; s 0 (i E 1, 2, , n) (except for rest states) and local 
controllability in the neighbourhood of all equilibrium points enables us (according to the logic of 
Proposition 1) to reach a certain local minimum point rI, E TJ (p = 1, 2, . , s) in hk(c). 

Inside the set hk(c), the previous arguments may be repeated for the points rk and rp: find the value 
of ck , go from the state (r+, 

.i! 
0) to one of the two domains (hk(ckl, - 0) or hljfckl, - 0)), reach a new stable 

equt tbrium, and so on. After a finite number of steps, the system will be in state (rk, 0), since the number 
s is finite. In analogous fashion, starting from a previously encountered “fork’ (r@ 0), one can reach 
states (rj, 0) with a configuration in h,(c). The symmetry of Eqs (1.1) with respect to time reversal implies 
that the stepwise passage (rk, 0) -+ (rkj, 0) -+ (rb 0) is feasible. 

Thus, for any two stable rest states, a trajectory of controlled motion connecting them exists. We have 
at the same time shown that, for any initial conditions (qo, qb) or (qk, qi), the object can be stopped in 
any stable equilibrium position (not known in advance). Because of this same symmetry (t -+ -t), this 
implies that the motion (qo, qb) + (rm, 0) -+ (rl, 0) 4 (qk, qjJ is feasible (where the subscripts m, 
1 = 1, 2, . . , s are to be found according to their meaning). This proves global controllability. 
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Example 3. Heavy rings mi (i = 1,2, . . . , n) (of negligible size), connected in succession by weightless 
springs of stiffness ci (i = 1, 2, . . . , n-l), can slide without friction along a closed wire, without self- 
intersections, whose curvature at each point is bounded (Fig.4). The only control action is an external 
force u, ] u ] < a, applied at the point ml collinear with its velocity. The arc coordinates s1 of the point 
ml is measured along the wire from a certain fixed position. For the load m2, the coordinate s2 is measured 
from the position of the point corresponding to s1 = 0 and the unstretched spring cl. Similar conventions 
apply to the remaining coordinates s, . . . , s,, so that the deformation of the ith spring will be 

t 
s;+~ 

(i = 1, 2, . . . , II - 1). The configuration vector of the system is q = (.sl, ~2, . . , s,JT E T’ x R”- . 
- SJ 

The Lagrangian is defined by the constant inertia matrix A(q) = A = diag (mJ (i = 1, 2, . , n) and 
the potential energy 

B(q) = 5 B,(s.)+inS c.(s. I r+l - ‘iI 
i=l 2 i=l ’ 

where Bi(sj) is the component of the potential of the gravity force for the ith load (i = 1, 2, . , n). 
In free motion (u = 0) the system has no particular solutions si z 0 except for rest states. Otherwise, 

in projection onto an axis tangent to the system at the point ml the elastic force and weight would be 
balanced, that is, we would have constant deformation (s2 - si) of the spring cl, and subsequently also 
deformations of all the other springs, corresponding to equilibrium of the object. 

Let (q*, 0) be any of the rest states. We claim that in its neighbourhood the system is locally 
controllable with input ~1. In the linear approximation (substituting x = q-q*) the equation of motion 

Aq’.=-aBlaq+bu, b=(l,O ,...I Of 

becomes 
Ax” = B,x + bu 

with B, a tridiagonal matrix: the principal diagonal elements are -(PI + ci), -(PI + cl + cl), . , 
-(pi + ciml + cJ, . . . , -(Pn-, + c,-? + c,,~,), -(& + cn-,), those of the diagonals above and below the 
principal diagonal cl, c?, . . . , c,,_i, where pi (i = 1, 2, . . . , n) are the coefficients of a quadratic form 
approximating the potential of the gravity force at the point in question. 

The substitution 

Ax = z, D = B,A-’ 

leads to the equation 
z” =Dz+bu 

Applying the rank criterion in its familiar form [l], we obtain a controllability matrix K = (b, Db, 
. . . ) Dn- b) which is upper triangular, and moreover det K = y;-‘y? . . . ynml f 0, where yi = ci/m; 
(i = 1, 2, . . . ) n-l). Therefore rank K = 12, implying local controllabmty in the neighbourhood of the 
(arbitrarily) selected rest state. 
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By Proposition 2, the above system of n heavy rings connected successively by springs along a closed 
wire turns out to be globally controllable by a single force u, applied to the first ring and bounded by 
an arbitrarily small quantity a. 

Proposition 3. If system (1.1) is globally controllable in TM = T’ x Rh-‘, 
in the corresponding covering space TM, = R’ x R? 

then it is globally controllable 

Proof. It will suffice to show that, considering any two states of rest in TM1, say (mm,, 0) and (r,, 0), 
analogous to a state (qi, 0) E 5 C TM with minimum value of cl = B(ql), controllable trajectory 
connecting them exists. We can then complete the following chain in TM,. 

in which the first and third passage (in direct and reversed time) are guaranteed by global controllability 
in TM. At the same time, local controllability is still maintained in the neighbourhood of each state 
q1, q2, ... 

Let us number the potential values ci = B(qi) at the critical points of M (which are finite in number) 
in order of increasing cl, c2, . . . In TMI, consider the set F@(q)) = {q E R”: B(q) < c, c E [cl, co]>, 
as a function of c. For cl < c < c2 the set splits into a denumerable number of connected components, 
repeating the figure H,(B(q)) C M in a “periodic” fashion. Within each component we have one of the 
infinite analogues rl, r2, . . . of the state q1 E M of the global minimum B(q). By known results [8], when 
the value c = c2 is reached, some of the components come into contact at points analogous to q2 E M. 

Suppose, for example, that the components containing rl and rz come into contact at a point r12. 
Then, by the logic of Proposition 2, a controllable motion (rl, 0) + (r12, 0) + (t-2, 0) in TM1 exists. 
Repeating similar passages several times, one can connect any rest configurations r, and rk from an 
infinite connected “chain” of domains in F,(B(q)) by a trajectory. When c = c3 the nature of the 
connectedness of the set F@(q)) changes {8] because some of the “chains” come into contact at points 
PI, P2r ... f analogous to q3 E M. Due to local controllability, one can go from a position (pr, 0) E TM, 
to any of the adjacent components of the set F@(q)). I n view of the reversibility of time, this guarantees 
a motion (rfi 0) -+ (pi, 0) -+ (rq, 0), where rf and r are arbitrary analogues of the point q, E M, selected 
in advance from the now connected subset F,(B{q)). 

The argument proceeds by induction on ci. Each time, within the next, newly connected subset 
F@(q)), any two analogues of the configuration q1 E M can be connected (indirectly) by a controllable 
trajectory. If c is sufficiently large, the set F@(q)) will become connected in R” (otherwise one would 
have a contradiction to global controllability in TM). Consequently, any two analogues r, and rl of the 
point q1 E M turn out to be in a common connected domain and can be connected by a controllable 
trajectory. 

Example 4. By Proposition 3, the objects considered previously in Examples 1 and 2 (Figs 1 and 2) 
are globally controllable in the covering phase space. They may be brought in finite time by a scalar 
bounded control from any initial state (qO, qb) to any prescribed state (qk, qiJ, stipulating the resulting 
number of complete revolutions of each separate link. 

I wish to thank I. I? Boretskii for suggesting the idea underlying this paper. 
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